
Shared Data

The examples we have seen so far have the
processes completely independent of each other.
In many problems the processes need to
coordinate by sharing some of the variables.

The multiprocessing module has a class for this:
multiprocessing.ctypes.RawValue()

The names here are getting really long. To simplify
this, we will import the modules in a different way.

If we say
 import multiprocessing
then we can use things in the multiprocessing
module, but we need to prefix the multiprocessing
name:
 multiprocessing.Process()

If we say
 from multiprocessing import *
we can use them without prefixing the module name.

In the past when we have used the random module
we said
 import random
and used it as
 x = random.randint(0, 10)

If we said instead
 from random import *
how would we call the randint function?
 A) x = randint(0, 10)
 B) x = random.randint(0, 10)
 C) x = .randint(0, 10)
 D) x = rand.int(0, 10)

To make a shared variable that represents an
integer, we use

 r = RawValue("i", <integer value>)
such as
 r = RawValue("i", 0)

This needs to be created outside of the function
the processes will work on, and passed as an
argument to them.

 <FirstSharedExample.py>

You need to be careful about how you work with
shared data because the processes can modify it
asynchronously.

<SecondSharedExample.py>

<ThirdSharedExample.py>

Locks

The last example had 10 processes each
incrementing a shared variable 10 times. The final
value of the variable should be 100 greater than
its starting value but it almost never is. Several
processes each read the value of the variable,
perhaps this is 55, and they each write the next
value, 56, into it. Instead of incrementing the
variable they are overwriting its value.

Imagine what would happen if deposits to a bank
account worked this way -- you start with $100,
deposit $50 and then deposit $25 and find that
your final balance is only $75. If we are going to
write programs where processes share data we
need to have some way to guarantee data integrity.

There are several solutions to this. We are going
to use a simple solution called a Lock. Lock is a
class in the multiprocessing module. The
constructor takes no arguments, so we create a
lock with Lock().

There are only two methods for the Lock class:
acquire() and release(). Acquiring the lock puts it
in its locked state; releasing it unlocks it.

The important thing about a lock is that when a
process tries to acquire it, the process is put on
hold until the lock becomes available. So if a
function has code
 blah blah
 lock.acquire()
 critical section
 lock.release()
then only one process at a time can execute the
critical section. Every other process that wants to
execute this section has to wait until the lock is
released so they can acquire it.

To make this work we generally create the lock
outside of the function and pass it in as an argument.
For example, the function that increments a shared
variable i might be

def F(r, lock):
 for i in range(0, 10):
 lock.acquire()
 r.value = r.value + 1
 print("Process %d set r to %d" %
 (current_process().pid, r.value))
 lock.release()

We need to be careful to match acquisitions and
releases of locks. This code will never finish running:

def F(r, lock):
 for i in range(0, 10):
 lock.acquire()
 r.value = r.value + 1
 print("Process %d set r to %d" %
 (current_process().pid, r.value))
 lock.release()

Why not???

